
Journal of Statistical Physics, VoL 27, No. 1, 1982 

Exact and Monte Carlo Computations on a 
Lattice Model for Change of 
Conformation of a Polymer 

O. J.  H e i l m a n n  I and J. Rotne  I 

Received December 15, 1980; revised May 11, 1981 

Conformational changes of linear polymers are studied by means of dynamic 
lattice models. The relaxation rates for the following four parameters describing 
the conformation of the polymer are studied for various polymer lengths: the 
square of the end-to-end distance, the square of the radius of gyration, the x 
component of the end-to-end vector, and the number of windings. 

In the most realistic models the relaxation rates for the first three of the 
above-mentioned properties decrease approximately proportional to the square 
of the number of monomers in agreement with the well-known Rouse model, 
while the relaxation of the winding number appears to be independent of the 
polymer length. The long-range interactions due to excluded volume restrictions 
are found to be of only minor importance compared to the rules presented for 
the local movements of the polymer segments. 

The results are obtained by diagonalizing the Markov matrix for n = 3, 4, 5, 
and 6 and by Monte Carlo simulation for n = 8, 16, 32, 64, and 128, where n is 
the number of monomers. 

KEY WORDS: Polymer conformation; dynamic lattice model; Monte Carlo 
method. 

1. INTRODUCTION 

In  la t t ice  m o d e l s  for  p o l y m e r  c o n f o r m a t i o n s  the  m o n o m e r  uni ts  of  the  

p o l y m e r  a re  s i tua ted  o n  the  ver t ices  of  a r egu la r  la t t ice  wi th  c o n s e c u t i v e  

m o n o m e r s  p l a c e d  on  n e i g h b o r i n g  ver t ices  o f  the  lat t ice.  Such  m o d e l s  a re  

pa r t i cu l a r l y  wel l  su i ted  for  inves t iga t ions  b y  m e a n s  of  h i g h - s p e e d  d ig i ta l  

c o m p u t e r s ;  the  first  m a j o r  c o n t r i b u t i o n  in this f ie ld  is the  M o n t e  C a r l o  

c o m p u t a t i o n s  b y  W a l l  a n d  his co-workers ,  (1) w h i c h  p r i m a r i l y  dea l  w i th  the  
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influence of the excluded volume on the dimensions of the polymer at 
equilibrium. 

The extension of the computations to study certain dynamical proper- 
ties of changes of conformation in polymers was introduced by Verdier and 
Stockmayer (2) ; this work was followed by a series of papers by Verdier (3-5) 
and Kranbuehl and Verdier (6-11) in all cases using the simple cubic lattice. 
Monnerie and Geny (~2-19) made similar computations for the diamond 
lattice. The papers by Birshtein et al. (2~ and Lax and Bender, (20 both of 
which deal with the simple cubic lattice, should also be mentioned in this 
connection. 

The present work is a continuation of an earlier work by Heilmann (22) 
(hereafter denoted I); a brief account of the results has been given ear- 
lier. (23) The computer calculations were finished as early as the beginning 
of 1976. In view of some of the more recent publications we might wish 
that we had done some additional computations; however, we feel that the 
results are of sufficient substance to still make them worthy of complete 
publication. 

The present work is primarily concerned with the influence of the 
long-range interaction imposed by the excluded volume restriction as 
contrasted by the short-ranged effect obtained by merely excluding 
"backfolding" and with the effect of including the "crankshaft" motion. 
Both problems were first considered in I. The crankshaft movement has 
also been included in the computations by Monnerie and Geny. O2-19) 
Hilhorst and Deutch ~24) recognized independently the same two problems 
when they tried to give a theoretical explanation of the results obtained by 
Verdict ~3-7) which did not include any crankshaft movement. Later the 
crankshaft movement was included in the computations by Birshtein et 
al. (2~ and Lax and Bender (21) and Kranbuehl and Verdier. ~ 11) A model by 
Verdier and Kranbuehl (9) which included the crankshaft movement but 
excluded the "one-bead move" is not relevant in this connection as pointed 
out by Boots and Deutch. (25) 

The present calculations are mainly Monte Carlo simulations done by 
starting the polymer many times in the same conformation and monitoring 
the relaxation of a few properties towards their equilibrium values; we have 
used the simple cubic lattice in all computations. The Monte Carlo simula- 
tions have been supplemented with exact calculations for very short poly- 
mers. The details of the models and the computations are given in Sections 
2 and 3, The results for the relaxation of the end-to-end vector and the 
radius of gyration are given in Section 4. 

In Section 5 we introduce a new property called the "winding number" 
defined as (four times) the difference between the number of left turns and 
the number of right turns (for details see Section 5); this property, although 
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not directly related to the helix content, might be expected to relax 
similarly. The results (also given in Section 5) show that the relaxation rates 
depend only weakly on the polymer length; but the effect of the excluded 
volume restriction is stronger than for the other properties. 

We conclude with a discussion of the relation of the present work to 
other investigations, primarily the simulations by Kranbuehl and Ver- 
dier, (1~) the predictions by Hilhorst and Deutch (24) and the scaling predic- 
tions of the Gennes (26) and of Jasnow and Moore. (27) 

2. THE M O D E L S  

We first define the allowed conformations of the polymers. A polymer 
is supposed to consist of n atoms numbered from 1 to n. The restriction to 
the cubic lattice is imposed by requiring that the x, y, and z coordinates of 
the position of each atom should be integers and that the distance between 
atom number  j and atom number  j +  1 should be one (for j = 1, 
2 , .  , . ,  n - 1). The line from atom number j  to atom n u m b er j  + 1 is called 
the j th  bond; the direction of the j th  bond will always mean the direction 
from the j th  to ( j  + 1)th atom. 

In models with excluded volume no two atoms of the polymer are 
allowed to simultaneously occupy the same position. In models without 
excluded volume this restriction is relaxed to only forbidding atom number 
j and atom number  j +  2 to occupy the same position (for j =  l, 
2 , . . . ,  n - 2), i.e., no "backfolding." 

In this paper we present the results for six different models: models 
numbered 1, 2, and 3 are with excluded volume, while models numbered 4, 
5, and 6 are the corresponding models without excluded volume. 

The kinetic rules of the models are as follows. At times t = 1, 2, 3 . . . .  
one of the n atoms is chosen at random with equal probability. The chosen 
atom is then moved according to the kinetic rules of the model provided 
the movement does not result in a conformation which violates the overlap 
conditions of the model. If the atom chosen is an end atom (i.e., number 1 
or number n), then in all six models a random choice with equal probability 
is made between the four positions of the end atom which would alter the 
direction of the first [respectively, (n - 1)th] bond to be perpendicular to its 
current direction. 

If the chosen atom is not an end atom (2 < j < n - 1) and the two 
bonds from the atom to its neighbors are in the same direction, then the 
atom is not moved in any of the models. Otherwise the directions of the two 
neighboring bonds are perpendicular to each other and a movement is 
attempted. In models 1 and 4 one only tries one possibility: to interchange 
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Fig. 1. Four examples of the crankshaft conformation. In versions (b) and (d) the crankshaft 
is only turned with 50% probability in models 2 and 5, and in version (c) the crankshaft is not 
turned. It is also possible to construct crankshaft conformations where the crankshaft is not 
turned using models 3 and 6. 

the directions of the two bonds; this means that model 1 is identical to the 
model considered by Verdier, (2-s'l~ while model 4 is identical to model 3 
of I. In the remaining models one also tries first to interchange the 
directions of the neighboring bonds, but if this fails because it results in an 
overlap between the j th  a tom and either the ( j  - 2)th atom or the ( j  + 2)th 
atom, then it is recognized that one has a crankshaft conformation (see Fig. 
1), and it is at tempted to turn the crankshaft. Assuming that the overlap 
occurs between the j th  and the ( j  + 2)th atom then the two atoms to be 
moved are number  j and number  j + 1, and the bonds to be changed are 
the ( j  - 1)th and ( j  + 1)th. In models 2 and 5 one changes their directions 
to one of the two possible perpendicular directions (making a random 
choice with equal probability); these two models are identical to model 2 or 
model 4, respectively, of I. Finally, in models 3 and 6 the directions of the 
( j  - 1)th and ( j  + 1)th bonds are changed to their opposites (which means 
an interchange of the directions of  the two bonds). 

The rules imply that the chance of moving a particular atom in one 
unit of time is proportional to 1In. In order to compare with real systems 
all times should be divided by n. This will be done without mentioning 
when relaxation times are presented in the following sections. 

Note that in the present class of models the internal forces in a 
polymer molecule do not obey Newton's  third law. Rather they are divided 
into constraining forces which ensure that the polymer stay connected and 
that the excluded volume restrictions are satisfied, and random forces 
which allow one to neglect the fact that the presence of one part  of the 
polymer might screen another part  from the random force of the surround- 
ing solvent. 
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3. THE COMPUTATIONS 

The main attention has been given to the computations of the longest 
relaxation time for the following three properties of the polymer conforma- 
tion: the (signed) x coordinate of the end-to-end vector (denoted x), the 
square of the length of the end-to-end vector (denoted x 2) and the square of 
the radius of gyration (denoted h2). This has been attempted by Monte 
Carlo simulation for n = 8, 16, 32, 64, and 128 and by exact computations 
for n -- 3, 4, 5, and 6. 

In the Monte Carlo calculations the polymer is started many times for 
each model from a given initial conformation and allowed to move accord- 
ing to the rules of the model for a fixed length of time. For each unit of 
time the random selection of an atom is done by a linear congruential 
random number generator (see Knuth (28)) 

Xk+ 1 = (X~ �9 5 '5 + 1)modulo235 (1) 

where X k is the kth random number. 
At fixed time intervals the conformation is analyzed and the values of 

the desired physical properties are computed and stored. In the present case 
we have chosen to let each start run until we had a set of 32 values 
obtained at equally spaced time intervals for each property. These sets of 
32 data points are averaged over the repeated starts; also, we extract from 
the repeated starts an estimate of the covariance matrix for a set of data 
points according to formula (I.4) of the appendix of I. The estimation of 
the relaxation times is then carried out according to the least-squares 
method discussed in the appendix of I. We have fitted to an expression 
either of the form 

a 0 + a I e x p ( -  ylt) (2) 

o r  

a 0 + a I exp( - "/it) + a2 exp( - 720 (3) 

We have generally preferred the form (3) with two relaxation times over the 
form (2) if was possible to distinguish two relaxation times. When the value 
of a 0 was known we made the estimation b o t h  with a 0 fixed at its known 
value and as a free parameter, to obtain a check on the goodness of the fit. 
For estimating the relaxation times of x, x 2, and h 2 w e  have used an initial 
conformation with bond directions + x, +y ,  + z, + x, +y ,  + z, + x , . . .  ; 
i.e., the same very stretched initial conformation as was used in I. This 
conformation is denoted A. In order to check the influence of the ini- 
tial conformation on the computed results we also tried a very compact 
initial conformation, but only for n = 64; this conformation is denoted B 
and is shown in Fig. 2. Since x has the equilibrium value, zero, in this 
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Fig. 2. The very compact initial conformation B used in testing the relaxation rates unfolding 
a 64-mer. 

conformation, only the relaxation of x 2 and h 2 can be monitored success- 
fully. 

The computations were done in part on a RCA000 computer and in 
part on a Texas Instruments model 980A computer. All the Monte Carlo 
simulations were written in assembly language. 

The number of movements per single start have ranged between 128 
and 32 • 106, and the number of starts have been between 160 and 16000; 
in the worst possible case we used 5 • 109 random numbers to generate 
necessary data for a given polymer length and a given model [this is 
probably about as high as one can go when the period of the generator is 
235 (~3  • 101~ 

In all we have effectively used between �89 year and 1 year of c.p.u, time 
(both computers have a cycle-time of the order 0.1 /~sec). 

In exact computations we write down the stochastic matrices for the 
models explicitly and compute the largest eigenvalue (less than one) by a 
standard numerical procedure; the corresponding relaxation time is then 
obtained as (minus) the logarithm of the eigenvalue. The only problem is 
(as mentioned in I) that the spatial symmetry of the cubic lattice should be 
taken into consideration. However, this has the advantage of reducing the 
size of the individual matrices enormously. 

4. THE RESULTS FOR x 2, h 2, A N D  x 

The computed relaxation times for X 2, h 2, and x for the six models are 
given in Tables I, II, and III, respectively. We have divided the relaxation 
times for models 1 and 4 by (n - 1) 3 and the relaxation times for models 2, 
3, 5, and 6 by (n - 1 )  2 in order to exhibit the n dependence more clearly. 
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Table I. Relaxation Rates for the Squared Length 
of the End-to-End Vector x 2a 

n Model 1 Model 2 Model 3 

3 43.0 21.5 21.5 
4 44.9 15.0 15.0 
5 54.9 13.8 13.7 
6 62.8 13.9 12.8 
8 74 --- 12 14.3 _+ 2 15.4 ___ 3 

16 62 _ 30 14.0 _-+ 0.8 13.8 + 1.2 
32 49 +-- 25 12.8 --- 0.5 14.6 _ 0.4 
64A 51 _ 10 11.7---0.8 11.5__.0.6 
64B - -  13 -+ 4 10.4 + 0.8 

128 21 --+ 5 9.8 -+ 0.4 11.5 __- 0.3 

n Model 4 Model 5 Model 6 

3 43.0 21.5 21.5 
4 44.9 15.0 15.0 
5 49.2 12.3 12.3 
6 52.4 11.5 10.9 
8 53 _ 3 12.8 + 0.6 9.5 • 2 

16 61 +-. 4 12.7 ___ 0.8 15.0 _ 1 
32 46 _+ 6 11.9 _+ 1 15.9 - 1.5 
64A 36 - 5 13.1 _+ 0.8 14.8 __. 1.5 
64B 25 --+ 2 9 + 6 12 - 3 

128 39 - 2 14.1 _+ 0.8 17.6 _+ 0.5 

aThe results have been multiplied by ( n - 1 )  3 in case of 
models 1 and 4, and by (n - 1) 2 elsewhere. 

F o r  m o d e l  1 wi th  in i t ia l  c o n f o r m a t i o n  B ( a n d  n = 64) we  d id  n o t  get  

a n y w h e r e  n e a r  e q u i l i b r i u m  wi th in  the  t ime  r a n g e  c h o s e n  fo r  the  c o m p u t a -  

t ion  w h i c h  ind ica t e s  tha t  the  r e l a x a t i o n  t ime  is m u c h  l o n g e r  t h a n  the  

r e l a x a t i o n  t ime  we  h a v e  c o m p u t e d  f r o m  the  in i t ia l  c o n f o r m a t i o n  A.  I t  

s h o u l d  be  n o t e d  tha t  it is poss ib le  w i th in  m o d e l  1 to m o v e  f r o m  c o n f o r m a -  

t ion  B to c o n f o r m a t i o n  A ;  i.e., the  two  ini t ia l  c o n f o r m a t i o n s  b e l o n g  to the  

s a m e  e rgod i c  class. H o w e v e r ,  it is a lso  o b v i o u s  tha t  the  p a t h  a w a y  f r o m  B is 

a v e r y  n a r r o w  o n e  w i th in  m o d e l  1. 

F o r  the  o t h e r  5 mode l s ,  the  a g r e e m e n t  b e t w e e n  the  r e l a x a t i o n  t imes  fo r  

the  two  ini t ia l  c o n f o r m a t i o n s  is fair.  Also ,  the  a g r e e m e n t  b e t w e e n  the  

r e l a x a t i o n  t imes  fo r  x 2 a n d  h 2 is v e r y  g o o d  a n d  c o n t i n u a t i o n  f r o m  the  exac t  

c o m p u t a t i o n s  to the  M o n t e  C a r l o  es t ima tes  is r e a s o n a b l y  smoo th .  I n  all, we  

c o n c l u d e  the  resul ts  do  h a v e  a h igh  d e g r e e  of  i n t e rna l  cons i s t ency ,  a l t h o u g h  

the  s t a n d a r d  dev i a t i ons  p r o b a b l y  h a v e  a t e n d e n c y  to c o m e  ou t  o n  the  sma l l  

side. 
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Table II. Relaxation Rates for the 
Squared Length of GyraUon a 

n Model 1 Model 2 Model 3 

3 43.0 21.5 21.5 
4 44.9 15.0 15.0 
5 54.9 13.8 13.7 
6 62.8 13.9 12.8 
8 57 • 3 13.0 • 1.2 14.8 _+ 1 

16 8 5 •  14.0• 9 + 4  
32 8 9 -  + 10 12.2• 1.2 11.6• 1.2 
64A 37• 10 10.1 +-3 11.2• 
64B 9 • 5 10.8 • 1 

128 20 • 10 7.7 + 1.2 11.5 • 0.3 

n Model 4 Model 5 Model 6 

3 43.0 21.5 21.5 
4 44.9 15.0 15.0 
5 49.2 12.3 12.3 
6 52.4 11.5 10.9 
8 47 • 2 12.6 + 2 11.2 _+ 0.5 

16 60 +- 6 14 + 10 15.0 • 0.5 
32 46 • 6 14.9 + 0.3 18.5 • 2 
64A 30 -+ 8 12.9 + 1.5 16.7 • 0.3 
64B 24 • 2 17 + 2 12 • 4 

128 37 • 2 13.5 • 0.8 16.7 • 0.6 
i 

~The results have been multiplied by ( n -  l )  3 in case of 
models 1 and 4, and by (n - 1) 2 elsewhere. 

T h e  m o s t  surpr i s ing  resul t  is tha t  the  r e l axa t i on  of  X 2 a n d  h 2 is s lowed  

d o w n  w h e n  the  e x c l u d e d  v o l u m e  res t r ic t ion  is l if ted,  a t  leas t  for  shor t  

po lymers .  F o r  the  m o d e l s  wi th  the  c r a n k s h a f t  m o v e m e n t  ( 2 - 5  a n d  3 - 6 )  the  

c ros sove r  to the  e x p e c t e d  b e h a v i o r  occurs  a r o u n d  n = 25; for  the  m o d e l s  

w i t h o u t  the  c r a n k s h a f t  m o v e m e n t  no  c ros sove r  appea r s  b e l o w  n = 100. Th is  

b e h a v i o r  is in fac t  so surpr i s ing  tha t  if it h a d  n o t  b e e n  s u p p o r t e d  by  the  

exac t  resul ts  for  n = 5 a n d  6 t h e n  we w o u l d  h a v e  d i smissed  it as s o m e  

s t r ange  a r t e fac t  of  the  M o n t e  C a r l o  m e t h o d .  

T h e  r e l axa t i on  of  x b e h a v e s  m o r e  n o r m a l l y ;  i.e., it re laxes  fas ter  w h e n  

the  e x c l u d e d  v o l u m e  res t r ic t ion  is l if ted.  F o r  the  m o d e l s  w i t h o u t  the  

e x c l u d e d  v o l u m e  res t r ic t ion  the  r e l axa t ion  t ime  for  x appea r s  to be  twice  as 

large  as the  c o r r e s p o n d i n g  r e l axa t i on  t ime  for  x 2 a n d  h2; this is in 

a g r e e m e n t  wi th  the  in tu i t ive  expec t a t ion .  F o r  the  m o d e l s  wi th  e x c l u d e d  

v o l u m e  the  r e l axa t i on  of  x is s lower  by  a f ac to r  s o m e w h e r e  b e t w e e n  3 a n d  
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Table III. Relaxation Rates for the Signed x Coordinate 
of the End-to-End Vector a 

n Model 1 Model 2 Model 3 

3 5.7 2.9 2.9 
4 8.8 2.9 2.9 
5 11.7 3.2 3.3 
8 15.4 + 0.4 3.5 _+ 0.1 3.6 ~ 0.1 

16 18.6 + 0.8 3.5 _+ 0.2 3.7 + 0.2 
32 16.9 __+ 0.6 2.7 _ 0.3 3.2 + 0.4 
64A 18,8 ___ 1.5 2.8 _+ 0.6 3.5 _+ 0.3 
64B 1.9 _+ 1.2 

128 13 --- 4 2.8 _+ 0.4 2.7 + 0.4 

n Model 4 Model 5 Model 6 

3 5,7 2.9 2.9 
4 8,8 2.9 2.9 
5 11,6 3,5 3.7 
8 18.6 ___ 0.4 4.5 _ 0.I 4.7 + 0.1 

16 27 _+ 1 5.9 _+ 0.2 5.7 + 0.4 
32 28 __. 2 5.9 + 0.3 7.2 ___ 0.5 
64A 22 +__ 6 6.3 _+ 0.5 6.8 --_ 0.8 

128 24 _+ 2 5.9 _+ 1.5 8.5 _+ 0.6 
i 

aThe results have been multiplied by ( n -  1) 3 in case of 
models 1 and 4 and by (n - 1) 2 elsewhere. 

5; i.e., de f in i t e ly  m o r e  t h a n  a f a c t o r  2 fo r  the  v a l u e s  of  n used  in the  

c o m p u t a t i o n s .  

T h e  d e p e n d e n c e  of  the  r e l axa t i on  t imes  on  n is of  the  s a m e  o r d e r  of  

m a g n i t u d e  for  x a n d  x 2 a n d  h2; b u t  the  inc rease  appea r s  to be  s lower  fo r  x 

t h a n  for  x 2 a n d  h 2. F o r  m o d e l s  5 a n d  6 w h i c h  h a v e  c r a n k s h a f t  m o v e m e n t  

a n d  no  e x c l u d e d  v o l u m e  res t r ic t ion  one  f inds,  as expec ted ,  tha t  the  re lax-  

a t ion  t imes  inc rease  wi th  the  s e c o n d  p o w e r  of  n - 1. F o r  m o d e l s  1 a n d  4 

wh ich  h a v e  no  c r a n k s h a f t  m o v e m e n t  the r e l axa t i on  t imes  inc rease  at  least  

as fast  as (n - 1)3; there  is no  d i sce rn ib le  e f fec t  of  the  e x c l u d e d  v o l u m e  o n  

the  d e p e n d e n c e  on  n - t .  F o r  the  two  m o d e l s  wi th  the  c r a n k s h a f t  m o v e -  

m e n t  a n d  the  e x c l u d e d  v o l u m e  res t r ic t ion  i n c l u d e d  (mode l s  2 a n d  3) the  

inc rease  is at  least  as (n - 1) 2 a n d  def in i t e ly  n o t  as fast  as (n - 1)3; in fact ,  

a ve ry  g o o d  fit  is o b t a i n e d  wi th  sca l ing  p r e d i c t i o n  (de G e n n e s ,  (26) J a s n o w  
a n d  M o o r e  (27)) ( n -  1) 2.2 w h e n  app l i ed  to the  r e l a x a t i o n  of  x 2 a n d  h 2. 

H o w e v e r ,  in v i ew of the  f ac t  tha t  this pa r t ly  is o b t a i n e d  by  h a v i n g  r a the r  

smal l  va lues  of  the  r e l a x a t i o n  t ime  fo r  smal l  va lues  of  n (as c o m p a r e d  to the  
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models without the excluded volume restriction), one should not attach too 
much importance to this accordance. 

5. RELAXATION OF THE WINDING NUMBER 

The original aim of introducing a measure for the number of windings 
in a polymer conformation was to get a measure of the helix content of the 
conformation to be used in connection with studies of the helix-coil 
transition. This property might (at least in principle) be measurable by 
circular dichroism. 

The property which we decided to use is defined as follows: We 
consider the bond directions as forming an ordered sequence (taking the 
bonds in their natural order) of symbols which can be either + x, - x, +y ,  
- y ,  + z, or - z .  From this sequence we delete all + x or - x ,  leaving a 
sequence which contains only +y ,  - y ,  + z, and - z. In this we count + 1 
each time we have one of the following ordered neighboring pairs: 

(+y, +z), (+z,-y), (-y,-z),  (-z, +y) 
We count - 1 when the ordered neighbors are 

+y), (-y, +z), 
while we count zero if we have two y ' s  (+  or - )  or two z's next to each 
other. 

As an example we take the following conformation (defined by the 
sequence of bond directions) of a 16-mer: 

( + x, +y ,  +y ,  + z, - x, - z, +y ,  + z, + z, + x, - y ,  + z, - y ,  - z, - z) 

Deleting the x's we get 

( + y ,  + y ,  + z , - z ,  +y ,  +z ,  + z , - y ,  + z , - y , - z , - z )  

which contains 11 neighbor pairs. In order they contribute 

0 + 1 + 0 + 1 +  1 + 0 + 1 - 1 + 1 + 1 + 0  

In all we find that the winding number is 5 for this configuration. 2 
To be sure, the winding number defined above is not related to the 

circular dichroism of the polymer, neither do we expect to convince 
anybody that the winding number measures the helix content. However, we 
do think that our "winding number" is sufficiently similar to these more 
physical quantities to allow us to draw relevant conclusions from our 
calculations. 

2 The "winding number" as defined here can be considered as a generalization of the "winding 
number" (also called the "index") defined in complex analysis for a closed curve in a plane 
with respect to a point in the plane. 



Exact and Monte Carlo Computations 

/ 

/,=.A c/. 

Fig. 3. 

29 

The tightly wound spiral conformation C used in testing the relaxation of the winding 
number. 

The initial conformations A and B are of course not particularly useful 
in the study of the relaxation of the winding number. Instead, we have 
created two new initial conformations which both have a high value of the 
winding number. The first one, a rather tightly wound spiral, is shown for 
n = 64 in Fig. 3; it is denoted C. Again to test the significance of the 
excluded volume we also tried a more open spiral, which is shown in Fig. 4 
for n = 64; this conformation is denoted D. The continuation of C and D 
to higher values of n should be obvious. 

Several of the models showed a marked influence of the choice of start 
configurations on the relaxation times; for these models (model 1, 2, 3, and 
4) we have used both start configurations for almost all values of n, while 
we for models 5 and 6 and start configuration D only have tried n = 256. 

We have no exact results on the relaxation of the winding number 
since this property appears to be meaningless for small values of n. The 
relaxation times for n = 32, 64, 128, 256, and 512 have been estimated by 
the Monte Carlo method for all six models and initial configuration C and 
D. The results are shown in Tables IV and V. For models 5 and 6 the 
relaxation rate is clearly independent of n. For  the other models the 
relaxation times show a weak increase with n, and some dependence on the 
initial configuration. However, we think it is fair to conclude that the 
winding number relaxes primarily through local changes in the conforma- 
tion and not through diffusion of disorder along the polymer chain. This 
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Fig. 4. 
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;:J 
The open spiral conformation D used in testing the relaxation of the winding number. 

Table IV. Relaxation Rates for the Winding Number 
Using Initial Configuration C a 

i i i 

Model 1 Model 2 Model 3 

32 30.2 + 0.3 149 +_ 2 126 ___ 1 

64 12.3 +_ 0.1 134 + 10 75 ___ 0.4 

128 6.1 ___ 0.5 128 +_ 10 39 _+ 4 

256 2.6 +_ 0.2 74 +__ 5 32 _+ 4 
512 1.0 +__ 0.1 64 +__ 5 29 ___ 3 

1024 6l +_ 5 

n Model 4 Model 5 Model 6 

32 28.3 + 0.6 490 _+ 20 710 +_ 50 

64 13.4 + 0.6 510 --- 500 730 - 70 
128 5.3 +__ 0.6 520 _+ 50 700 + 30 
256 5.8 _ 0.7 490 _+ 30 640 _ 10 
512 4.1 + 0.4 510 --- 80 645 +__ 12 

i 

a All results have been multiplied by a factor of 103. 
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Table V. Relaxation Rates for the Winding Number 
Using Initial Configuration D a 

n Model 1 Model 2 Model 3 

32 38.2 _+ 1.5 124 _+ 1 202 + 5 
64 17_+ 6 151 _+ 5 186 + 10 

128 16.5_+1 118_+8 168+ 12 
256 11 .7+2 131+15 135_+25 
512 12.0_+ 1 106_+7 197_+5 

n Model 4 Model 5 Model 6 

32 33.5 _+ 1.5 438 -_+ 3 490 _+ 50 
64 17.7 + 1.2 404 -+ 8 850 -+ 100 

128 14.8 _+ 2 408 + 3 770 _+ 120 
256 12.7 + 1.2 460 + 400 690 -+ 12 
512 9.8 -4- 0.8 420 -+ 50 840 -+ 100 

i 

All results have been multiplied by a factor 103. 

would mean that the relaxation times should be essentially independent of 
the polymer length. 

6. DISCUSSION 

The main result one can obtain from these computations is the 
dependence of the relaxation times on the polymer length. It may be 
compared with the predictions of the scaling theory (26'27) and the theory of 
Hilhorst and Deutch. (24) The scaling theory, in principle, applies only to 
the Rouse model, (29) but the present models should be expected to behave 
similarly unless some special feature of the model plays a role. Hilhorst and 
Deutch (24) showed that the models without the crankshaft movement 
(models 1 and 4) do have such a special feature and that the relaxation 
times in these models should increase at least as n 3 as contrasted with an 
increase as n 2 in the other models. The scaling prediction is an increase as 
n 2 in models without the excluded volume restriction and as n 22 in models 
with the excluded volume restriction. 

As mentioned already in Section 4 our results for the relaxation of x 2 
and n 2 in models 2, 3, 5, and 6 do agree with the scaling prediction. 
However, the effect of introducing the excluded volume restriction is at low 
values of n in clear disagreement with assumptions of the scaling theory. 
Also, the relaxation of x shows an n 2 dependence in all four models; since 
it is impossible for the relaxation time of x to be smaller than the relaxation 
time of x 2 (at least in the present class of models) we can only confirm the 
statement by Boots and Deutch (25) that one needs much larger values of n 
in order to see scaling behavior. 
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Table VI. Relaxation Rates for 
Model 3, Multiplied by (n - 1)  2, 

Found in Present Work and 
Results by Birshtein et al. (2~ (Bi), 

Recalculated for Comparison 
i i i 

/'/ X X 2 h 2 

16Bi 4.2 16 15 
16 3.7 14 9 
32Bi 3.5 18 15 
32 3.2 15 12 

The paper by Hilhorst and Deutch (241 does not really consider the 
effect of the excluded volume restriction. Therefore, their predictions 
should be compared primarily to models 4, 5, and 6 for which the 
agreement is perfect. They also conjecture that the effect of the excluded 
volume should be weak; this is confirmed by the present calculations. 

Our results can of course also be compared to the other Monte Carlo 
simulations. Lax and Bender (20 made simulations for n = 16, 32, and 64 on 
the model which is denoted model 1 in the present paper. They found 
relaxation times for x 2 only; their values are so much smaller than ours that 
we can only conclude that their way of determining the relaxation time is 
not compatible with the method we have used. 

Birshtein et  a/. (2~ made simulations on the model we call model 3. 
They record values for the relaxation times for x, x 2, and h 2 (as well as 
many other properties), but only for n = 16 and n = 32. Their results are 
listed in Table VI together with the corresponding results from our Table 
III. It is seen that the agreement is fairly good. 

The simulations by Kranbuehl and Verdier (H) include both models 
with and without the crankshaft movement. They have only monitored the 
end-to-end vector obtaining a relaxation time which should be compared 
with our results for the relaxation of x. Their model without the crankshaft 
movement is almost identical to our model 1; they are compared in Table 
VII. The agreement is very good except for n -- 64 (63); we do not think 
that the difference is significantly larger than the uncertainty connected 
with the methods. The comparison of our model 3 with their models with 
the crankshaft movement is complicated by the fact that the rules are 
somewhat different, since they include other two-bead movements than the 
crankshaft movement. If one counts these other two-bead movements as 
the two "one-bead movements" of which they are composed and one 
ignores the excluded volume except for backfolding then Table VIII 
obtains. Clearly, our model 3 has a much larger proportion of crankshaft 



Exact and Monte Carlo Computations 33 

Table VII. Relaxation Rates for x in 
Model 1, Multiplied by (n - 1)3; Left Side 
Recalculated Results by Kranbuehl and 
Verdier, <11) Right Side Present Results 

i i 

/'/ X X il 

9 17.3 15.4 8 
I5 18.4 18.6 16 
33 16.7 16.9 32 
63 12.5 18.8 64A 

13 128 

Table VIII. The Average Number of "One-Bead Moves" and "Crankshaft 
Moves" Per Cycle in the Three Models of Ref. 11 and in Our Model 6 (and 

Model 3 if the Excluded Volume is Ignored) 

p = 0.1 p = 0.5 p = 0.9 Model 6 (3) 

One bead 0.56 0.68 0.79 0.53 
Crankshaft 0.009 0.045 0.08 0.15 

Table IX. Relaxation Rates for x 
Multiplied by (n - 1)2; Left Side 
Recalculated Results of Ref. 11 
withp = 0, 9, Right Side Present 

Results Using Model 3 

/7 X X F/ 

9 5.8 3.6 8 
15 5.7 3.7 16 
33 4.2 3.2 32 
63 1.8 3.5 64A 

2.7 128 

movement s  than  any  of the three mixed  models  used by  K r a n b u e h l  a n d  
Verdier .  In  Tab le  IX we have  c o m p a r e d  their  result  for  p -- 0.9 with mode l  
3; the fact  that  K r a n b u e h l  a n d  Verdier  f ind  a faster  re laxa t ion  at  the lower 
values of n might  be a t t r ibu ted  to the h igher  mobi l i ty  at  the ends in their  
model .  

In  conclusion,  we do not  see any  obvious  d iscrepancies  be tween  our  
resul ts  a n d  the resul ts  o b t a i n e d  b y  us ing  a u t o c o r r e l a t i o n  func t ions  
(Birshtein et al. ~2~ a n d  K r a n b u e h l  and  Verdier(l l~).  The  d i f f e r e n c e i n  the 
conclus ion  reached  by  us and  the conclus ion  reached  by  K r a n b u e h l  and  
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Verdier concerning the importance of the excluded volume might be 
attributed to the fact the computations only consider rather low values in n. 

The monitoring of the relaxation from an extreme conformation seems 
thus to be justified both by the agreement with the results obtained from 
autocorrelation functions and by the internal consistency of our own 
computations (consistent relaxation times for the two initial conformations 
for n = 64, consistent relaxation times for x 2 and h 2, and consistent 
relaxation times whether knowledge of the equilibrium value was used in 
the estimation or not). 

In this connection we want to stress that we also think that the 
possibility that part of the polymer chain might be in a locked or an almost 
locked conformation does constitute a serious problem. It was already 
pointed out in I and by Verdier (4) that the models with excluded volume 
are not ergodic for n larger than 20. For moderate values of n it is only a 
small fraction of the conformations which is separated from the main 
ergodic class and placed in a separate ergodic class each of which is very 
small. But as n increases the probability of having a locked conformation in 
part of the chain increases (to one in the limit n --- m), and the fraction of 
the conformations which belong to the main ergodic class (the class with all 
the open conformations) will decrease (to zero in the limit n = oe); "how- 
ever, the main ergodic class will still be much larger than any of the other 
classes and the averages of equilibrium properties taken over this class will 
generally not deviate much from the averages taken over the whole ensem- 
ble, Consequently, one might hope that the problem posed by the lack of 
ergodicity is not a serious obstacle. 

A related problem is the existence of conformations which, although 
they do belong to the main ergodic class, have only a very thin connection 
to the rest of the conformations in the class. An exarnple is, as mentioned 
earlier, conformation B in model 1. One might picture the main ergodic 
class as consisting of a body of conformations which have a rather high 
mobility and are well connected to each other by legal movements and 
some long, narrow dendrites of conformations with low mobility (the 
mobility decreasing towards the tip of the dendrite) and connections which 
make it essentially one dimensional. The relaxation times for the body will 
be the ones normally observed; the relaxation times corresponding to 
movements along one of the dendrites will be much larger, but they will 
have a low weight and only be observable if one explicitly starts near the 
tip of the dendrite. 
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